ExoPRIME – Solid-phase immunoisolation and OMICS analysis of surface-marker-specific exosomal subpopulations

Exosomes encapsulate genomic and proteomic biomarkers for non-invasive diagnosis and disease monitoring. However, exosome surface-markers heterogeneity is a major drawback of current isolation methods. Researchers at Louisiana Tech University report a direct, one-step exosome sampling technology, ExoPRIME, for selective capture of CD63+ exosome subpopulations using an immune-affinity protocol. Microneedles (300μm × 30 mm), functionalized with anti-CD63 antibodies, were incubated under various experimental conditions in conditioned astrocyte medium and astrocyte-derived exosome suspension. The probe’s capture efficiency and specificity were validated using FluoroCet assay, immunofluorescent imaging, and OMICS analyses. Significantly higher exosomes were captured by probes incubated for 16 h at 4 0C in enriched exosomal suspension (23 × 10 6 exosomes per probe) vis-à-vis 2 h at 4 0 C (12 × 10 6) and 16 h at 22 0C (3 × 10 6) in conditioned cell media.

The results demonstrate the application of ExoPRIME over a broad dynamic range of temperature and incubation parameters, offering flexibility for any desired application. ExoPRIME permits the use and re-use of minimal sample volumes (≤200 μL), can be multiplexed in arrays, and integrated into a lab-on-a-chip platform to achieve parallel, high-throughput isolation of different exosome classes in a semi-automated workstation. This platform could provide direct exosomal analysis of biological fluids since it can elegantly interface with existing room-temperature, picomolar-range nucleic acid assays to provide a clinical diagnostic tool at the point of care.

Nwokwu CD, Ishraq Bari SM, Hutson KH, Brausell C, Nestorova GG. (2021) ExoPRIME: Solid-phase immunoisolation and OMICS analysis of surface-marker-specific exosomal subpopulations. Talanta 236:122870. [abstract]

Leave a Reply

Your email address will not be published. Required fields are marked *