Researchers from the University of Utah show for the first time, the influence of buffer substitution and dilution effects on exosome size and electrophoretic mobility. Cyclical electrical field flow fractionation (Cy-El-FFF) in various substituted fluids was applied to exosomes and other particles. Tested carrier fluids of deionized (DI) water, 1× phosphate buffered saline (PBS), 0.308 M trehalose, and 2% isopropyl alcohol (IPA) influenced Cy-El-FFF-mediated isolation of A375 melanoma exosomes. All fractograms revealed a crescent-shaped trend in retention times with increasing voltage with the maximum retention time at ∼1.3 V AC. A375 melanoma exosome recovery was approximately 70-80% after each buffer substitution, and recovery was independent of whether the sample was substituted into 1× PBS or DI water. Exosome dilution in deionized water produced a U-shaped dependence on electrophoretic mobility. The effect of dilution using 1× PBS buffer revealed a very gradual change in electrophoretic mobility of exosomes from ∼-1.6 to -0.1 μm cm/s V, as exosome concentration was decreased. This differed from the use of DI water, where a large change from ∼-5.5 to -0.1 μm cm/s V over the same dilution range was observed. Fractograms of separated A375 melanoma exosomes in two substituted low-ionic-strength buffers were compared with synthetic particle fractograms. Overall, the ability of Cy-El-FFF to separate exosomes based on their size and charge is a highly promising, label-free approach to initially catalogue and purify exosome subtypes for biobanking as well as to enable further exosome subtype interrogations.
Exosome Isolation – Cyclical Electrical Field Flow Fractionation in Low-Ionic-Strength Fluids
Petersen KE, Shiri F, White T, Bardi GT, Sant H, Gale BK, Hood JL. (2018) Exosome Isolation: Cyclical Electrical Field Flow Fractionation in Low-Ionic-Strength Fluids. Anal Chem [Epub ahead of print]. [article]