Ultrafast and highly sensitive in situ monitoring of exosomal miRNA and exosome tracing

Exosomal microRNAs (miRNAs) are reliable biomarkers of disease progression, allowing for non-invasive detection. However, detection of exosomal miRNAs in situ remains a challenge due to low abundance, poor permeability of the lipid bilayers, and slow kinetics of previous methods. Researchers at the Institute of Analytical Chemistry for Life Science have developed an accelerated DNA nanoprobe was implemented for fast, in situ monitoring of miRNA in exosomes by employing a spatial confinement strategy. This nanoprobe not only detects miRNA in exosomes but also distinguishes tumor exosomes from those derived from normal cells with high accuracy, paving the way toward exosomal miRNA bioimaging and disease diagnosis. Furthermore, the fast response allows for this nanoprobe to be successfully utilized to monitor the process of exosomes endocytosis, making it also a tool to explore exosome biological functions.

Chen J, Xie M, Shi M, Yuan K, Wu Y, Meng HM, Qu L, Li Z. (2022) Spatial Confinement-Derived Double-Accelerated DNA Cascade Reaction for Ultrafast and Highly Sensitive In Situ Monitoring of Exosomal miRNA and Exosome Tracing. Anal Chem [Epub ahead of print]. [abstract]

Leave a Reply

Your email address will not be published. Required fields are marked *